

Adama Science and Technology University School of Electrical Engineering and Computing Electrical Power and Control Engineering

Final Exam for Electrical Engineering and Computing

2nd Year students

Course Name: Fundamentals of Electrical Engineering Course code: EPCE2101

Year: II Time Allotted: 3:00 Hrs

Date of Exam: Apr 13th, 2022

Name: _		 	 	
I.D: _	 			
Group:				

Instructions!!

- Make sure that the Exam has 3 Parts and 13 Questions.
- Possession of any kind of Cellphone/Tablet during exam is strictly forbidden.
- > Solutions/Answers to questions should be **clear** and **to the point**.
- > Unclear/Unreadable answers will be considered as wrong answers.

For Instructors Use Only!

Question Category	Part-I	Part-II (10%)			Part-III (20%)					
Question #	(6%)	1	2	3	4	1	2	3	4	Total
Marks Allotted	6 %	2.5%	2%	2.5%	3%	6%	6%	6%	6%	40%
Marks Obtained										

Good Luck!!

PART I. Choose the BEST answer among the given alternatives [6 Pts]

1. The Thevenin resistance at terminals a and b is:

 $\begin{array}{c|c}
5 \Omega \\
\hline
0 \\
a \\
b \\
0
\end{array}$ $\begin{array}{c}
20 \Omega \\
\end{array}$

- A) 5Ω
- B) 25 Ω
- C) 4Ω
- D) 15 Ω
- **2.** When the voltage across a **Capacitor** is **doubled**, the energy stored is:
 - A) The same
- B) Quadrupled
- C) Halved
- D) Doubled
- 3. If $v_1=30Sin(\omega t + 10^\circ)$ and $v_2=-20Cos(\omega t + 50^\circ)$, which of these statements is true?
 - A) v_1 leads v_2 by 130°
- B) v_1 and v_2 are in phase
- C) v_1 lags v_2 by 130°
- D) None

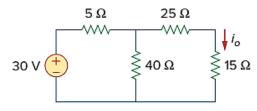
PART II. Answer the following questions precisely [10 Pts]

- 1. What is Superposition Principle? [2.5 Pts]
- 2. What is Step Response? [2 Pts]
- 3. Define the following terms? [2.5 Pts]
 - A) Impedance

B) Admittance

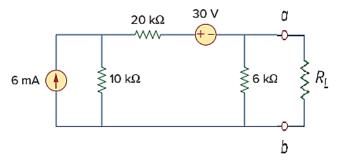
C) Conductance

D) Reactance

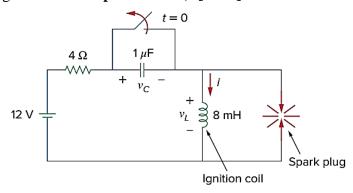

- E) Susceptance
- 4. Plot the phasor diagrams of voltage and current in: [3 Pts]
 - a) Resistors

b) Capacitors

c) Inductors

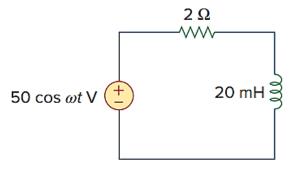

PART III. Workout the following questions by showing all the necessary steps [24 Pts]

1. For the following linear circuit below. [6 Pts]



- **a.** Calculate the current i_0 ?
- **b.** What value of input voltage is necessary to make $i_0 = 5A$?

2. For the circuit shown below: [6 Pts]


- a. Find the **Thevenin equivalent** circuit with respect to terminals a-b?
- **b.** Find the **Norton equivalent** circuit using **Source transformation**?
- c. If $R_L = 6\Omega$ then find the voltage drop across R_L ?
- **d.** Find the value of $\mathbf{R}_{\mathbf{L}}$ for maximum power transfer?
- e. Find the maximum power transferred?
- 3. From an Automobile Ignition System, we consider the voltage generating system. The system is modeled by the circuit shown in the figure below. The 12-V source is due to the battery and alternator. The 4- Ω resistor represents the resistance of the wiring. The ignition coil is modeled by the 8-mH inductor. The 1- μ F capacitor (known as the condenser to auto-mechanics) is in parallel with the switch (known as the breaking points or electronic ignition which **opens at t=0s**). [6 Pts]

Thus,

- a) Determine the voltage drop $V_L(t)$ across the Ignition coil to create spark.
- b) Determine the voltage drop across the Capacitor $V_C(t)$ and Resistor model $V_R(t)$

4. For the RL circuit given below: [6 Pts]

- **a.** Find the Total impedance (\mathbf{Z}_T) of the circuit?
- **b.** Find the Total Current (I_T) of the circuit?
- **c.** Find the voltage drop across the **Inductor** $V_L(t)$ and **Resistor** $V_R(t)$?
- **d.** Plot the Impedance phasor diagram (\mathbf{Z}_T , \mathbf{Z}_R and \mathbf{Z}_C)
- e. Plot the Phasor diagram for Supply voltage (V_S) , and the Total current (I_T)